

Chemical Databases and Open Chemistry on the Desktop

5th Meeting on US Government Chemical Databases & Open Chemistry August 25, 2011

Dr. Marcus D. Hanwell marcus.hanwell@kitware.com

Outline

- Background
- Opening up chemistry
- Workflows in computational chemistry
- Avogadro chemical editor
- Databases on the desktop
- Quixote
- HPC resource integration
- Advanced visualization

My Background

- Ph.D. (Physics) University of Sheffield
- Google Summer of Code Avogadro
- Postdoc (Chemistry) University of Pittsburgh
- R&D engineer Kitware, Inc
- Passionate about physics, chemistry, and the growing need to improve computational tools
- See the need for powerful open source, cross platform frameworks and applications
- Develop(ed): Gentoo, KDE, Kalzium, Avogadro, Open Babel, VTK, ParaView, Titan, CMake

Kitware

- Founded in 1998: 5 former GE Research employees
- 95 employees: 42% PhD
- Privately held, profitable from creation, no debt
- Rapidly Growing: >30% in 2010, 7M web-visitors/quarter
- Offices
 - Albany, NY
 - Carrboro, NC
 - Lyon, France
 - Bangalore, India

- 2011 Small Business Administration's Tibbetts Award
- HPCWire Readers and Editor's Choice
- Inc's 5000 List: 2008 to 2010

Kitware: Core Technologies

Opening Up Chemistry

- Computational chemistry is currently one of the more closed sciences
- Lots of black box proprietary codes
 - Only a few have access to the code
 - Publishing results from black box codes
 - Many file formats in use, little agreement
- More papers should be including data
- Growing need for open standards

Movements for Open Chemistry

- Formed an "unorganization" Blue Obelisk
 - Published first article in 2005
 - Open data, open standards and open source
 - Meet at ACS and other conferences when possible
 - Follow-up article currently in press

- Quixote collaboration more recently
 - Provide meaningful data storage and exchange
 - Principally targeting computational chemistry

Typical Chemistry Workflow

Problem: Pretty Complex/Manual

- Most steps require user intervention
- Obtain starting structure (previous work, databases)
- Edit structure
- Write input file
- Move input file to cluster
- Submit to queue
- Wait for completion
- Retrieve input file
- Analyze output file
- Extract the relevant data, change formats
- Store results
- Repeat

Improved Chemistry Workflow

Avogadro

- Project began 2006
- Split into library and application (plugin based)
- Ele Est New Ball State Extended Setting the Tools

 Fragment Ubsey.

 Fragment Ubsey.

 Fragment Ubsey.

 Fragment Ubsey.

 Aces

 A
- One of very few open source editors
- Designed to be extensible from the start
- Generate input & read output from many codes
- An active and growing community
- Chemistry needs a free, open framework

Avogadro's Roots

- Avogadro projected started in 2006
- First funded work in 2007 by Marcus Hanwell

- Google Summer of Code student
- Final year of Ph.D. spent the summer coding
- Funded as part of KDE project Kalzium editor

- Also uses open standards, e.g. OpenGL
- · Cross platform, open source stack

Avogadro Vital Statistics

- Supports Linux, Windows and Mac OS X
- Contributions from over 20 developers
- Over 180,000 downloads over 4 years
- Translated into 19 languages
- Used by Kalzium for molecular editor

- Featured by Trolltech/Nokia,
 - Qt in use
 - Qt ambassador program

Desktop Database

- Use of "document store" NoSQL
 - Doesn't force too much structure
 - Some entries have experimental data available
 - Some have computational jobs
 - Employ a "pile of stuff" approach
 - Can store both source and derived data
 - · Calculate identifiers, QSAR properties, etc
- MongoDB is a scalable, open solution
 - Proven scaling with large web applications

Chemistry Data Explorer

- Qt application
- Connects to local or remote database
- Uses VTK for visual data exploration
- Can ingest new data
 - Uses Open Babel to generate descriptors
 - Standard InChi, SMILES, molecular weight
 - More could be added
 - All derived from files stored in the database

Chemistry Data Explorer

Database Interaction on the Web

- Avogadro directly accesses some (readonly) public databases:
 - PDB, NIH "fetch by name"
 - Resolve structure to common name using CIR
 - More could be added
- ChemData also uses NIH CIR for data
- Quixote aims to support both public and private sharing models – open framework

Quixote Architecture

Avogadro

GÅMESS

OpenQube – Quantum Data

- Reads in key quantum data
 - Basis set used in calculation
 - Eigenvectors for molecular orbitals
 - Density matrix for electron density
 - Standard geometry
- Multithreaded calculation
 - Produce regular grids of scalar data
 - Molecular orbitals, electron density...

Molecular Orbitals and Electron Density

Quantum files store basis sets and matrices

$$GTO = ce^{-\alpha r^2}$$

$$\phi_i = \sum_{\mu} c_{\mu i} \phi_{\mu}$$

$$\rho(r) = \sum_{u} \sum_{v} P_{\mu v} \phi_{\mu} \phi_{v}$$

 Using these equations, and the supplied matrices – calculate cubes

Calling Stand Alone Programs

- Many already supported:
 - GAMESS, GAMESS-UK, Molpro, Q-Chem, MOPAC, NWChem, Gaussian, Dalton
 - Easy to add more
- Some codes writing Avogadro based custom applications,
 - Q-Chem, Molpro...
- DLPOLY author approached me:
 - Open sourced DLPOLY2, want a GUI

Job Submission & Management

- Take input file, submit to queue, monitor, retrieve, repeat
- System tray resident Qt application
 - Manage both local and remote jobs
- Interest from developers
 - Use in other applications
 - Share development/maintenance burden

Open in Avogadro When Complete

Advanced Visualization: VTK

- New Avogadro plugin:
 - Takes volumetric data from Avogadro
 - Uses GPU accelerated rendering in VTK
- Excitement from many in the community
- Several groups interested in collaborating
- Google Summer of Code project
- Leverage significant capabilities in VTK

Volume Rendered With Contours

Electron Density Volume Render

Electron Density Ray Tracing

Conclusions

- There is still a lot of work to do
- Open databases are of critical importance
- Need tools to make retrieving and depositing data easier
- Improved data exchange is essential to improve reproducibility in chemistry
- Create shared collaboration platforms
 - Deliver improved workflows, enable research

Extra Background Slides

Additional visualization and background slides

Standard Representations

Standard Representations

Biomolecules

Nanomaterials

Simplified Views

Volumetric Data: Molecular Orbitals

Periodic Systems

Hybrid Views: CPK + MO + Ball & Stick

Linked Views of Live Data

Informatics

3D Interaction Widgets

VTK: The Toolkit

- Collection of C++ libraries
 - Leveraged by many applications
 - Divided into logical areas, e.g.
 - Filtering data processing in visualization pipeline
 - InfoVis informatics visualization
 - Widgets 3D interaction widgets
 - VolumeRendering 3D volume rendering
- Cross platform, using OpenGL
- Wrapped in Python, Tcl and Java

VTK Development Team

• From Ohloh: Very large, active development team: Over the past twelve months, 100 developers contributed new code to VTK. This is one of the largest open-source teams in the world, and is in the **top 2%** of all project teams on Ohloh.

and many others...

INDIANA UNIVERSITY

ParaView

- Parallel visualization application
- Open source, BSD licensed
- Turn-key application wrapper around VTK
- Parallel data processing and rendering

Large Data Visualization

- BlueGene/L at LLNL
 - -65,536 compute nodes (32 bit PPC)
 - 1,024 I/O nodes (32 bit PPC)
 - 512 MB of RAM per node
- Sandia Red Storm
 - 12,960 compute nodes (AMD Opteron dual)
 - 640 service and I/O nodes
 - 40 TB of DDR RAM per node

1 Billion Cell Asteroid Simulation

Tiled Displays

Parallel Processing/Rendering

3D Chemistry Visualization

- Some existing features specific to chemistry
 - Gaussian cube, PDB, and a few others
- Excellent handling of volumetric data:
 - Marching cubes
 - Volume rendering
 - Contouring
- Advanced rendering:
 - Point sprites
 - Manta real time ray traction

Titan: VTK and Informatics

- Led by Sandia National Laboratories
- Substantial expansion of VTK:
 - Informatics & analysis
- Actively developed, growing feature set
- Improved 2D rendering and API
- Database connectivity, client-server, pipeline based approach
- Uses web technologies such as ProtoViz
- Scalable, interactive infoviz

Manta: Real Time Ray Tracing

New Frontiers

- New work porting VTK
 - Use C++ as the common core
 - iOS port in the early stages
 - Android port
 - Use OpenGL ES 2.0 new rendering code
- Also ParaViewWeb delivering over web
 - Use image delivery and rendering on server
 - Also using WebGL for rendering (optionally)

Future Directions

- VTK modularization (in progress)
 - Developing more agile build systems
 - Automating more with CMake
- Using Git more fully to improve stability
 - Use of master and next
 - Topic branches merge when ready
- Code review using Gerrit
 - Integration with continuous integration
 - Test before merge

